Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Steroid Biochem Mol Biol ; 236: 106446, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38104728

RESUMO

Prostate cancer (PC) is dependent on androgen receptor (AR) activation by testosterone and 5α-dihydrotestosterone (DHT). Intratumoral androgen accumulation and activation despite systemic androgen deprivation therapy underlies the development of castration-resistant PC (CRPC), but the precise pathways involved remain controversial. Here we investigated the differential contributions of de novo androgen biosynthesis and androgen precursor conversion to androgen accumulation. Steroid flux analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed on (CR)PC cell lines and fresh patient PC tissue slices after incubation with classic and alternative biosynthesis intermediates, alongside quantitative PCR analysis for steroidogenic enzyme expression. Activity of CYP17A1 was undetectable in all PC cell lines and patient PC tissue slices. Instead, steroid flux analysis confirmed the generation of testosterone and DHT from adrenal precursors and reactivation of androgen metabolites. Precursor steroids upstream of DHEA were converted down the first steps of the alternative DHT biosynthesis pathway, but did not proceed through to active androgen generation. Comprehensive steroid flux analysis of (CR)PC cells provides strong evidence against intratumoral de novo androgen biosynthesis and demonstrates that androgen precursor steroids downstream of CYP17A1 activities constitute the major source of intracrine androgen generation.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Androgênios/metabolismo , Antagonistas de Androgênios , Cromatografia Líquida , Espectrometria de Massas em Tandem , Testosterona/metabolismo , Di-Hidrotestosterona/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Esteroides/metabolismo , Linhagem Celular Tumoral , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo
4.
J Clin Endocrinol Metab ; 105(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32170323

RESUMO

CONTEXT: Patients with adrenal insufficiency require increased hydrocortisone cover during major stress to avoid a life-threatening adrenal crisis. However, current treatment recommendations are not evidence-based. OBJECTIVE: To identify the most appropriate mode of hydrocortisone delivery in patients with adrenal insufficiency who are exposed to major stress. DESIGN AND PARTICIPANTS: Cross-sectional study: 122 unstressed healthy subjects and 288 subjects exposed to different stressors (major trauma [N = 83], sepsis [N = 100], and combat stress [N = 105]). Longitudinal study: 22 patients with preserved adrenal function undergoing elective surgery. Pharmacokinetic study: 10 patients with primary adrenal insufficiency undergoing administration of 200 mg hydrocortisone over 24 hours in 4 different delivery modes (continuous intravenous infusion; 6-hourly oral, intramuscular or intravenous bolus administration). MAIN OUTCOME MEASURE: We measured total serum cortisol and cortisone, free serum cortisol, and urinary glucocorticoid metabolite excretion by mass spectrometry. Linear pharmacokinetic modeling was used to determine the most appropriate mode and dose of hydrocortisone administration in patients with adrenal insufficiency exposed to major stress. RESULTS: Serum cortisol was increased in all stress conditions, with the highest values observed in surgery and sepsis. Continuous intravenous hydrocortisone was the only administration mode persistently achieving median cortisol concentrations in the range observed during major stress. Linear pharmacokinetic modeling identified continuous intravenous infusion of 200 mg hydrocortisone over 24 hours, preceded by an initial bolus of 50-100 mg hydrocortisone, as best suited for maintaining cortisol concentrations in the required range. CONCLUSIONS: Continuous intravenous hydrocortisone infusion should be favored over intermittent bolus administration in the prevention and treatment of adrenal crisis during major stress.


Assuntos
Insuficiência Adrenal/tratamento farmacológico , Glucocorticoides/administração & dosagem , Hidrocortisona/administração & dosagem , Sepse/complicações , Estresse Fisiológico/fisiologia , Estresse Psicológico/complicações , Administração Oral , Adolescente , Insuficiência Adrenal/sangue , Insuficiência Adrenal/complicações , Insuficiência Adrenal/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cortisona/sangue , Estudos Transversais , Esquema de Medicação , Feminino , Glucocorticoides/uso terapêutico , Humanos , Hidrocortisona/sangue , Hidrocortisona/uso terapêutico , Infusões Intravenosas , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Sepse/sangue , Estresse Psicológico/sangue , Resultado do Tratamento , Adulto Jovem
5.
JCI Insight ; 2(8)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28422753

RESUMO

BACKGROUND: Adrenal aldosterone excess is the most common cause of secondary hypertension and is associated with increased cardiovascular morbidity. However, adverse metabolic risk in primary aldosteronism extends beyond hypertension, with increased rates of insulin resistance, type 2 diabetes, and osteoporosis, which cannot be easily explained by aldosterone excess. METHODS: We performed mass spectrometry-based analysis of a 24-hour urine steroid metabolome in 174 newly diagnosed patients with primary aldosteronism (103 unilateral adenomas, 71 bilateral adrenal hyperplasias) in comparison to 162 healthy controls, 56 patients with endocrine inactive adrenal adenoma, 104 patients with mild subclinical, and 47 with clinically overt adrenal cortisol excess. We also analyzed the expression of cortisol-producing CYP11B1 and aldosterone-producing CYP11B2 enzymes in adenoma tissue from 57 patients with aldosterone-producing adenoma, employing immunohistochemistry with digital image analysis. RESULTS: Primary aldosteronism patients had significantly increased cortisol and total glucocorticoid metabolite excretion (all P < 0.001), only exceeded by glucocorticoid output in patients with clinically overt adrenal Cushing syndrome. Several surrogate parameters of metabolic risk correlated significantly with glucocorticoid but not mineralocorticoid output. Intratumoral CYP11B1 expression was significantly associated with the corresponding in vivo glucocorticoid excretion. Unilateral adrenalectomy resolved both mineralocorticoid and glucocorticoid excess. Postoperative evidence of adrenal insufficiency was found in 13 (29%) of 45 consecutively tested patients. CONCLUSION: Our data indicate that glucocorticoid cosecretion is frequently found in primary aldosteronism and contributes to associated metabolic risk. Mineralocorticoid receptor antagonist therapy alone may not be sufficient to counteract adverse metabolic risk in medically treated patients with primary aldosteronism. FUNDING: Medical Research Council UK, Wellcome Trust, European Commission.

6.
J Clin Endocrinol Metab ; 102(6): 1797-1806, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27845856

RESUMO

Context: The classic androgen synthesis pathway proceeds via dehydroepiandrosterone, androstenedione, and testosterone to 5α-dihydrotestosterone. However, 5α-dihydrotestosterone synthesis can also be achieved by an alternative pathway originating from 17α-hydroxyprogesterone (17OHP), which accumulates in congenital adrenal hyperplasia (CAH). Similarly, recent work has highlighted androstenedione-derived 11-oxygenated 19-carbon steroids as active androgens, and in CAH, androstenedione is generated directly from 17OHP. The exact contribution of alternative pathway activity to androgen excess in CAH and its response to glucocorticoid (GC) therapy is unknown. Objective: We sought to quantify classic and alternative pathway-mediated androgen synthesis in CAH, their diurnal variation, and their response to conventional GC therapy and modified-release hydrocortisone. Methods: We used urinary steroid metabolome profiling by gas chromatography-mass spectrometry for 24-hour steroid excretion analysis, studying the impact of conventional GCs (hydrocortisone, prednisolone, and dexamethasone) in 55 adults with CAH and 60 controls. We studied diurnal variation in steroid excretion by comparing 8-hourly collections (23:00-7:00, 7:00-15:00, and 15:00-23:00) in 16 patients with CAH taking conventional GCs and during 6 months of treatment with modified-release hydrocortisone, Chronocort. Results: Patients with CAH taking conventional GCs showed low excretion of classic pathway androgen metabolites but excess excretion of the alternative pathway signature metabolites 3α,5α-17-hydroxypregnanolone and 11ß-hydroxyandrosterone. Chronocort reduced 17OHP and alternative pathway metabolite excretion to near-normal levels more consistently than other GC preparations. Conclusions: Alternative pathway-mediated androgen synthesis significantly contributes to androgen excess in CAH. Chronocort therapy appears superior to conventional GC therapy in controlling androgen synthesis via alternative pathways through attenuation of their major substrate, 17OHP.


Assuntos
Hiperplasia Suprarrenal Congênita/tratamento farmacológico , Androgênios/metabolismo , Ritmo Circadiano , Glucocorticoides/administração & dosagem , Hidrocortisona/administração & dosagem , 17-alfa-Hidroxipregnenolona/urina , Adolescente , Hiperplasia Suprarrenal Congênita/metabolismo , Hiperplasia Suprarrenal Congênita/urina , Adulto , Androsterona/análogos & derivados , Androsterona/urina , Cortodoxona/análogos & derivados , Cortodoxona/urina , Preparações de Ação Retardada , Dexametasona/uso terapêutico , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glucocorticoides/uso terapêutico , Humanos , Hidrocortisona/uso terapêutico , Masculino , Pessoa de Meia-Idade , Prednisolona/uso terapêutico , Pregnanotriol/análogos & derivados , Pregnanotriol/urina , Adulto Jovem
7.
J Clin Endocrinol Metab ; 101(6): 2545-53, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27003302

RESUMO

CONTEXT: Steroid sulfatase (STS) cleaves the sulfate moiety off steroid sulfates, including dehydroepiandrosterone (DHEA) sulfate (DHEAS), the inactive sulfate ester of the adrenal androgen precursor DHEA. Deficient DHEA sulfation, the opposite enzymatic reaction to that catalyzed by STS, results in androgen excess by increased conversion of DHEA to active androgens. STS deficiency (STSD) due to deletions or inactivating mutations in the X-linked STS gene manifests with ichthyosis, but androgen synthesis and metabolism in STSD have not been studied in detail yet. PATIENTS AND METHODS: We carried out a cross-sectional study in 30 males with STSD (age 6-27 y; 13 prepubertal, 5 peripubertal, and 12 postpubertal) and 38 age-, sex-, and Tanner stage-matched healthy controls. Serum and 24-hour urine steroid metabolome analysis was performed by mass spectrometry and genetic analysis of the STS gene by multiplex ligation-dependent probe amplification and Sanger sequencing. RESULTS: Genetic analysis showed STS mutations in all patients, comprising 27 complete gene deletions, 1 intragenic deletion and 2 missense mutations. STSD patients had apparently normal pubertal development. Serum and 24-hour urinary DHEAS were increased in STSD, whereas serum DHEA and testosterone were decreased. However, total 24-hour urinary androgen excretion was similar to controls, with evidence of increased 5α-reductase activity in STSD. Prepubertal healthy controls showed a marked increase in the serum DHEA to DHEAS ratio that was absent in postpubertal controls and in STSD patients of any pubertal stage. CONCLUSIONS: In STSD patients, an increased 5α-reductase activity appears to compensate for a reduced rate of androgen generation by enhancing peripheral androgen activation in affected patients. In healthy controls, we discovered a prepubertal surge in the serum DHEA to DHEAS ratio that was absent in STSD, indicative of physiologically up-regulated STS activity before puberty. This may represent a fine tuning mechanism for tissue-specific androgen activation preparing for the major changes in androgen production during puberty.


Assuntos
Sulfato de Desidroepiandrosterona/metabolismo , Desidroepiandrosterona/metabolismo , Ictiose Ligada ao Cromossomo X/metabolismo , Puberdade/metabolismo , Esteril-Sulfatase/genética , Testosterona/metabolismo , Adolescente , Adulto , Criança , Colestenona 5 alfa-Redutase/genética , Colestenona 5 alfa-Redutase/metabolismo , Estudos Transversais , Desidroepiandrosterona/sangue , Desidroepiandrosterona/urina , Sulfato de Desidroepiandrosterona/sangue , Sulfato de Desidroepiandrosterona/urina , Humanos , Ictiose Ligada ao Cromossomo X/genética , Masculino , Metaboloma , Metabolômica , Reação em Cadeia da Polimerase Multiplex , Mutação , Testosterona/sangue , Testosterona/urina , Adulto Jovem
8.
J Clin Endocrinol Metab ; 101(5): 2069-75, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26990942

RESUMO

CONTEXT: Polycystic ovary syndrome (PCOS) is a heritable, complex genetic disease. Animal models suggest that androgen exposure at critical developmental stages contributes to disease pathogenesis. We hypothesized that genetic variation resulting in increased androgen production produces the phenotypic features of PCOS by programming during critical developmental periods. Although we have not found evidence for increased in utero androgen levels in cord blood in the daughters of women with PCOS (PCOS-d), target tissue androgen production may be amplified by increased 5α-reductase activity analogous to findings in adult affected women. It is possible to noninvasively test this hypothesis by examining urinary steroid metabolites. OBJECTIVE: We performed this study to investigate whether PCOS-d have altered androgen metabolism during early childhood. DESIGN, SETTING, AND PARTICIPANTS: Twenty-one PCOS-d, 1-3 years old, and 36 control girls of comparable age were studied at an academic medical center. MAIN OUTCOME MEASURES: Urinary steroid metabolites were measured by gas chromatography/mass spectrometry. Twenty-four hour steroid excretion rates and precursor to product ratios suggestive of 5α-reductase and 11ß-hydroxysteroid dehydrogenase activities were calculated. RESULTS: Age did not differ but weight for length Z-scores were higher in PCOS-d compared to control girls (P = .02). PCOS-d had increased 5α-tetrahydrocortisol:tetrahydrocortisol ratios (P = .04), suggesting increased global 5α-reductase activity. There was no evidence for differences in 11ß-hydroxysteroid dehydrogenase activity. Steroid metabolite excretion was not correlated with weight. CONCLUSIONS: Our findings suggest that differences in androgen metabolism are present in early childhood in PCOS-d. Increased 5α-reductase activity could contribute to the development of PCOS by amplifying target tissue androgen action.


Assuntos
Filho de Pais Incapacitados , Colestenona 5 alfa-Redutase/metabolismo , Núcleo Familiar , Síndrome do Ovário Policístico , Adulto , Pré-Escolar , Feminino , Humanos , Lactente , Tetra-Hidrocortisol/urina , Adulto Jovem
9.
Endocrinology ; 157(3): 1122-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26650568

RESUMO

Mitochondrial cytochrome P450 (CYP) enzymes rely on electron transfer from the redox partner ferredoxin 1 (FDX1) for catalytic activity. Key steps in steroidogenesis require mitochondrial CYP enzymes and FDX1. Over 30 ferredoxin mutations have been explored in vitro; however, no spontaneously occurring mutations have been identified in humans leaving the impact of FDX1 on steroidogenesis in the whole organism largely unknown. Zebrafish are an important model to study human steroidogenesis, because they have similar steroid products and endocrine tissues. This study aimed to characterize the influence of ferredoxin on steroidogenic capacity in vivo by using zebrafish. Zebrafish have duplicate ferredoxin paralogs: fdx1 and fdx1b. Although fdx1 was observed throughout development and in most tissues, fdx1b was expressed after development of the zebrafish interrenal gland (counterpart to the mammalian adrenal gland). Additionally, fdx1b was restricted to adult steroidogenic tissues, such as the interrenal, gonads, and brain, suggesting that fdx1b was interacting with steroidogenic CYP enzymes. By using transcription activator-like effector nucleases, we generated fdx1b mutant zebrafish lines. Larvae with genetic disruption of fdx1b were morphologically inconspicuous. However, steroid hormone analysis by liquid chromatography tandem mass spectrometry revealed fdx1b mutants failed to synthesize glucocorticoids. Additionally, these mutants had an up-regulation of the hypothalamus-pituitary-interrenal axis and showed altered dark-light adaptation, suggesting impaired cortisol signaling. Antisense morpholino knockdown confirmed Fdx1b is required for de novo cortisol biosynthesis. In summary, by using zebrafish, we generated a ferredoxin knockout model system, which demonstrates for the first time the impact of mitochondrial redox regulation on glucocorticoid biosynthesis in vivo.


Assuntos
Ferredoxinas/genética , Hidrocortisona/biossíntese , Mitocôndrias/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Encéfalo/metabolismo , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Glucocorticoides/biossíntese , Gônadas/metabolismo , Hibridização In Situ , Glândula Inter-Renal/metabolismo , Larva/genética , Larva/metabolismo , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
J Clin Endocrinol Metab ; 98(1): 161-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23162091

RESUMO

CONTEXT: Mitotane [1-(2-chlorophenyl)-1-(4-chlorophenyl)-2,2-dichloroethane] is the first-line treatment for metastatic adrenocortical carcinoma (ACC) and is also regularly used in the adjuvant setting after presumed complete removal of the primary tumor. Mitotane is considered an adrenolytic substance, but there is limited information on distinct effects on steroidogenesis. However, adrenal insufficiency and male hypogonadism are widely recognized side effects of mitotane treatment. OBJECTIVE: Our objective was to define the impact of mitotane treatment on in vivo steroidogenesis in patients with ACC. SETTING AND DESIGN: At seven European specialist referral centers for adrenal tumors, we analyzed 24-h urine samples (n = 127) collected from patients with ACC before and during mitotane therapy in the adjuvant setting (n = 23) or for metastatic ACC (n = 104). Urinary steroid metabolite excretion was profiled by gas chromatography/mass spectrometry in comparison with healthy controls (n = 88). RESULTS: We found a sharp increase in the excretion of 6ß-hydroxycortisol over cortisol (P < 0.001), indicative of a strong induction of the major drug-metabolizing enzyme cytochrome P450 3A4. The contribution of 6ß-hydroxycortisol to total glucocorticoid metabolites increased from 2% (median, interquartile range 1-4%) to 56% (39-71%) during mitotane treatment. Furthermore, we documented strong inhibition of systemic 5α-reductase activity, indicated by a significant decrease in 5α-reduced steroids, including 5α-tetrahydrocortisol, 5α-tetrahydrocorticosterone, and androsterone (all P < 0.001). The degree of inhibition was similar to that in patients with inactivating 5α-reductase type 2 mutations (n = 23) and patients receiving finasteride (n = 5), but cluster analysis of steroid data revealed a pattern of inhibition distinct from these two groups. Longitudinal data showed rapid onset and long-lasting duration of the observed effects. CONCLUSIONS: Cytochrome P450 3A4 induction by mitotane results in rapid inactivation of more than 50% of administered hydrocortisone, explaining the need for doubling hydrocortisone replacement in mitotane-treated patients. Strong inhibition of 5α-reductase activity is in line with the clinical observation of relative inefficiency of testosterone replacement in mitotane-treated men, calling for replacement by 5α-reduced androgens.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Citocromo P-450 CYP3A/metabolismo , Mitotano/efeitos adversos , Mitotano/uso terapêutico , Adolescente , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/urina , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Androgênios/administração & dosagem , Androgênios/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/uso terapêutico , Necessidades e Demandas de Serviços de Saúde , Terapia de Reposição Hormonal/métodos , Terapia de Reposição Hormonal/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Medicina de Precisão/métodos , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
11.
J Clin Endocrinol Metab ; 97(2): E257-67, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22162478

RESUMO

CONTEXT: P450 oxidoreductase deficiency (PORD) is a unique congenital adrenal hyperplasia variant that manifests with glucocorticoid deficiency, disordered sex development (DSD), and skeletal malformations. No comprehensive data on genotype-phenotype correlations in Caucasian patients are available. OBJECTIVE: The objective of the study was to establish genotype-phenotype correlations in a large PORD cohort. DESIGN: The design of the study was the clinical, biochemical, and genetic assessment including multiplex ligation-dependent probe amplification (MLPA) in 30 PORD patients from 11 countries. RESULTS: We identified 23 P450 oxidoreductase (POR) mutations (14 novel) including an exonic deletion and a partial duplication detected by MLPA. Only 22% of unrelated patients carried homozygous POR mutations. p.A287P was the most common mutation (43% of unrelated alleles); no other hot spot was identified. Urinary steroid profiling showed characteristic PORD metabolomes with variable impairment of 17α-hydroxylase and 21-hydroxylase. Short cosyntropin testing revealed adrenal insufficiency in 89%. DSD was present in 15 of 18 46,XX and seven of 12 46,XY individuals. Homozygosity for p.A287P was invariably associated with 46,XX DSD but normal genitalia in 46,XY individuals. The majority of patients with mild to moderate skeletal malformations, assessed by a novel scoring system, were compound heterozygous for missense mutations, whereas nearly all patients with severe malformations carried a major loss-of-function defect on one of the affected alleles. CONCLUSIONS: We report clinical, biochemical, and genetic findings in a large PORD cohort and show that MLPA is a useful addition to POR mutation analysis. Homozygosity for the most frequent mutation in Caucasians, p.A287P, allows for prediction of genital phenotype and moderate malformations. Adrenal insufficiency is frequent, easily overlooked, but readily detected by cosyntropin testing.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Adolescente , Hiperplasia Suprarrenal Congênita/urina , Insuficiência Adrenal/genética , Insuficiência Adrenal/metabolismo , Insuficiência Adrenal/urina , Adulto , Criança , Estudos de Coortes , Análise Mutacional de DNA/métodos , Transtornos do Desenvolvimento Sexual , Feminino , Estudos de Associação Genética , Genitália/anormalidades , Hormônios Esteroides Gonadais/urina , Humanos , Masculino , Metaboloma , Modelos Biológicos , Modelos Moleculares , Reação em Cadeia da Polimerase Multiplex/métodos , NADPH-Ferri-Hemoproteína Redutase/deficiência , NADPH-Ferri-Hemoproteína Redutase/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...